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ABSTRACT
Interactions with conspecifics are key to any social species. In order to navigate this social world,
it is crucial for individuals to learn from and about others. From learning new skills by observing
parents perform them to making complex collective decisions, understanding the mechanisms
underlying social cognitive processes has been of considerable interest to psychologists and
neuroscientists. Here, we review studies that have used computational modelling techniques,
combined with neuroimaging, to shed light on how people learn and make decisions in social
contexts. As opposed to standard social neuroscience methods, the computational approach
allows one to directly examine where in the brain particular computations, as estimated by
models of behavior, are implemented. Findings suggest that people use several strategies to learn
from others: vicarious reward learning, where one learns from observing the reward outcomes of
another agent; action imitation, which relies on encoding a prediction error between the
expected and actual actions of the other agent; and social inference, where one learns by
inferring the goals and intentions of others. These computations are implemented in distinct
neural networks, which may be recruited adaptively depending on task demands, the environ-
ment and other social factors.
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Introduction

Over the past decade, many cognitive neuroscience
studies, particularly in the field of learning and deci-
sion-making, have used a combination of computa-
tional modelling of behavior together with
neuroimaging. Internal variables, such as reward predic-
tion errors or subjective values, often cannot be directly
measured from the task design, but instead have to be
extracted from a computational model estimated from
participants’ behavior. These variables or model para-
meters can in turn be regressed against a measure of
brain activity during task performance, such as the fMRI
(functional magnetic resonance imaging) BOLD (blood
oxygen level-dependent) signal, giving insights into
whether and where in the brain these variables are
computed (Cohen et al., 2017; Corrado & Doya, 2007;
O’Doherty, Hampton, & Kim, 2007; O’Doherty, Dayan,
Friston, Critchley, & Dolan, 2003).

More recently, this type of computational or model-
based neuroimaging experiments have been conducted
in the social domain, to better understand the signals
computed by the brain during social interactions. In this
review, we outline several approaches that have been

taken to examine social neuroscience from a computa-
tional perspective. We focus on two aspects of the
social cognition literature: (i) how people learn from
observing others as well as the application to strategic
interactions, and (ii) how people learn about other
people’s preferences and make collective decisions.

Learning FROM others

It is crucial for humans and other animals to learn about
the world around them in order to make adaptive
decisions, obtain rewards and avoid punishments.
These “objective” values of decision variables can be
learned experientially, by trial and error. In social spe-
cies however, there are many situations where one can
learn by observing the behavior of another individual.
Such observational learning can be clearly advanta-
geous as it allows an individual to assess the conse-
quences of actions available in the environment
without directly experiencing these potentially negative
or threatening outcomes. Current theories suggest that
three strategies are at play in this process (Dunne &
O’Doherty, 2013): vicarious reinforcement-learning,
action imitation, and inference about others’ beliefs
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and intentions (Figure 1). It is worth noting that this
distinction, at least between action imitation and infer-
ence over others, has been discussed at length in devel-
opmental and comparative psychology – also referred
to as “imitation versus emulation” distinction (Horner &
Whiten, 2005; Nielsen, 2006; Thompson & Russell, 2004;
Whiten, McGuigan, Marshall-Pescini, & Hopper, 2009).

Three observational learning strategies with
distinct computational and neural signatures

In vicarious reinforcement-learning, an individual learns
from observing someone else experiencing outcomes,
rather than experiencing outcomes by themselves.
Similar to experiential learning, associations between
the actions taken and the outcomes experienced by
another agent can be learned to inform the observer
of the different action values. These associations can
then act as a guide for the observer’s actions.
Computational mechanisms of such forms of observa-
tional learning involve computing a prediction error
about the other agent’s outcome, i.e. the difference
between the other agent’s predicted and actual out-
come (Burke, Tobler, Baddeley, & Schultz, 2010; Cooper,
Dunne, Furey, & O’Doherty, 2012; Hill, Boorman, & Fried,

2016; Suzuki et al., 2012). These observational reward
prediction errors (oRPE) have been found to be
encoded in the brain, in particular in the ventromedial
prefrontal cortex (vmPFC; Burke et al., 2010; Suzuki
et al., 2012) and in the dorsal striatum (Cooper et al.,
2012) in fMRI studies. A single-unit recording study in
humans recently reported the encoding of observa-
tional RPEs at the single neuron level in the rostral
anterior cingulate cortex (ACC; Hill et al., 2016). These
neural signals are partly shared with the encoding of
experiential RPEs in dopaminergic regions of the stria-
tum and projections to the vmPFC (Behrens, Hunt,
Woolrich, & Rushworth, 2008; Daw & Doya, 2006;
Rangel, Camerer, & Montague, 2008). The value of
rewards obtained by others, as well as predictions
about these rewards (i.e. the expected value) have
also been found to be encoded in the brain, particularly
in the ACC (Apps & Ramnani, 2014; Lockwood, Apps,
Roiser, & Viding, 2015). Collectively, these findings sug-
gest that vicarious reinforcement-learning is implemen-
ted in the brain and that this mechanism depends on
neural circuits that at least partially overlap with those
involved in experiential learning.

A second observational learning mechanism, action
imitation, involves learning from observing another

Figure 1. Summary of computational strategies underlying social learning. oRPE: observational reward prediction error; APE: action
prediction error.
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person’s actions. In imitation learning, an observer
learns to take a particular action based on the extent
to which the other agent took that same action in the
past and in the same context. This action imitation
strategy can also be explained in a reinforcement-learn-
ing framework, whereby actions performed by the
other agent are reinforced positively, while unchosen
actions are reinforced negatively, leading to the com-
putation of action values that can then be used by the
observer. Action prediction errors – the difference
between the action performed by another agent and
the action that was expected of them by the observer –
have been reported in the dorsolateral prefrontal cortex
(dlPFC), dorsomedial prefrontal cortex (dmPFC), and
bilateral inferior parietal lobule (Burke et al., 2010;
Suzuki et al., 2012). While not being too computation-
ally demanding, action imitation can be especially
advantageous in situations where the other agent’s
outcomes are not available for the observer to see. At
the level of neuronal implementation, it is possible that
action imitation is implemented in part through mirror
neurons, which have been found to fire when an indi-
vidual performs an action but also observes another
person performing the same action (Catmur, Walsh, &
Heyes, 2009; Lametti & Watkins, 2016; Rizzolatti &
Craighero, 2004; Rizzolatti, Fadiga, Gallese, & Fogassi,
1996). This imitation strategy involves some level of
trust that the other person’s actions are correct. In
case of distrust, the same strategy can result in
“reverse” action imitation, whereby the observer
chooses the opposite action from that of the other
agent. Other variables likely to modulate imitation
learning could then include factors such as how well
the observer knows the agent, how reliable the agent’s
actions are, or whether the agent has a competitive
interest.

Finally, a last strategy for observational learning
involves a more complex inference process about
other agents’ intentions and hidden mental states. In
such a strategy, an individual updates their beliefs
about others’ goals and intentions in a Bayesian man-
ner, combining their prior beliefs with evidence they
get from observing others’ actions and/or outcomes. A
mechanism that has been put forward to implement
this strategy is inverse reinforcement-learning or
inverse RL (Collette, Pauli, Bossaerts, & O’Doherty,
2017; Ng & Russell, 2000). Contrary to classical RL, in
which an individual learns the value of an action from
observing the rewards, in inverse RL an individual infers
the reward distribution from observing the actions of
another agent. In another study, a hierarchical Bayesian
learning model best explained how people infer the
intentions of others. In this model the observer learns

about the volatility of the partner’s intentions in order
to optimize his/her own predictions about the validity
of the partner’s advice (Diaconescu et al., 2014).
Interestingly, brain activity tracking these social infer-
ence computations was found in regions that are
known to be part of the mentalizing and Theory of
Mind network: dmPFC (Boorman, O’Doherty, Adolphs,
& Rangel, 2013; Collette et al., 2017; Hampton,
Bossaerts, & O’Doherty, 2008), temporoparietal junction
(TPJ; Behrens et al., 2008; Boorman et al., 2013) and
posterior superior temporal sulcus (pSTS; Hampton
et al., 2008). These regions were originally identified
with non-computational approaches in a range of social
inference tasks (Fletcher et al., 1995; Frith & Frith, 2006;
Koster-Hale & Saxe, 2013; Saxe & Kanwisher, 2003; Van
Overwalle & Baetens, 2009). Overall, a neurocomputa-
tional approach to social inference during observational
learning has helped providing a mechanistic account of
Theory of Mind – the ability to attribute mental states
and intentions to others. It also provides a global frame-
work in which the observer can also take into account
the possibility that the agent they are observing has
different preferences, goals and intentions from their
own, or a competing agenda.

An empirical question that remains to be examined
in more detail is how much of these computations and
circuits involved in observational learning strategies
overlap with those of experiential reinforcement-learn-
ing, when an individual learns by directly experiencing
outcomes. Extensive work points towards two major
strategies underlying experiential learning: model-free
or stimulus-driven learning, as well as model-based or
goal-directed learning (Balleine & Dickinson, 1998; Daw,
Gershman, Seymour, Dayan, & Dolan, 2011; Dickinson,
1985; John P. O’Doherty, Cockburn, & Pauli, 2017). A
parallel could be drawn between the experiential and
the social domains, whereby vicarious RL and action
imitation RL could be considered model-free strategies,
while social inference could constitute a model-based
strategy, requiring the observer to build a model of
world and to learn probability distributions of another
agent’s goals and transition between states (Dunne,
D’Souza, & O’Doherty, 2016). However, neuroimaging
results involving areas such as the TPJ, pSTS or dmPFC
in social inference learning, which are not typically
involved in model-based experiential learning, suggest
that this parallel may be too simplistic. Even though the
computations underlying social inference learning may
fit the description of “model-based” computations, the
neural circuits recruited in the social domain seem to be
distinct from those implementing model-based compu-
tations during experiential learning. More empirical evi-
dence is needed to investigate how much overlap there
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is between the circuits for social and experiential learn-
ing and whether and how exactly the computations
implemented by these circuits differ.

Application to strategic and competitive
interactions

Many social interactions involve a strategic or competi-
tive component (e.g. games), such that an individual
has an incentive to exploit the knowledge they learn
from their opponent, by relying on recursive beliefs
about the opponent’s intentions (e.g. “I think that he
thinks that I think. . .”). These beliefs are acquired
through learning from previous interactions with that
opponent (for a detailed review, see Lee & Seo, 2016).
People in such interactions can even have an incentive
to lie or purposefully deceive each other, and therefore
to detect these deceptive strategies in their opponents.
The study of strategy in social neuroscience has tended
to utilize concepts and tasks from behavioral game
theory (Camerer, 2003). Many studies have now devel-
oped computational models combined with neuroima-
ging to explain these strategic social interactions and
how they are implemented in the brain.

For example, in a study using the trust game, in
which an individual learns about another person’s repu-
tation and trust in a two-person economic exchange,
activity in the dorsal striatum was found to predict
reciprocity or “intention to trust” in the game (King-
Casas et al., 2005). In a recent study, participants had
to learn about the trustworthiness of several partners
and then decide to play with strangers who look more
or less like the original partners (FeldmanHall et al.,
2018). Amygdala tracked resemblance to untrustworthy
partners, dmPFC tracked resemblance to trustworthy
partners, and dorsal striatum (caudate) activation pat-
terns supported the decision to trust new players. In
another study (Hampton et al., 2008), pairs of partici-
pants played the inspector game, a variant of the com-
petitive game “matching pennies”. In this game one
participant is an employer who can inspect or not
inspect and the other an employee or can work or
shirk. Both participants have different interests, such
that the employee has an incentive to shirk if not
being inspected, or to work if inspected; in contrast
the employer’s preference is to not inspect while the
employee is working. Therefore, both participants have
to try and predict what the other player’s next action
will be in order to choose the best action for them-
selves. The computational model that best explains
participants’ behavior consists of an algorithm that
iteratively updates the probability of the opponent’s

action based on their previous actions, combined with
a second-order mental state representation (i.e. an
effect of the opponent’s predictions on the participant’s
actions). Different components of this computational
model were tracked by different neural substrates in
the brain. The mPFC was found to incorporate second-
order knowledge by tracking an individual’s expecta-
tions given the degree of model-predicted influence
from the opponent. The pSTS tracked a signal used to
update the second-order knowledge representation
once the opponent’s action is observed. A recent repli-
cation and extension of this work used theta-burst
transcranial magnetic stimulation (TMS), to provide evi-
dence for a causal influence of the rTPJ on mentalizing
and integration of other people’s beliefs during strate-
gic social behavior (Hill et al., 2017).

Another strategic learning task which was used in
combination with computational modelling and fMRI is
a stag-hunt game, in which participants interact with a
computerized agent using different levels of recursive
inferences (sophistication). In the game, the participant
and the computerized agent are hunters who can either
individually hunt a rabbit for a small payoff, or collabo-
rate to hunt a stag for a large payoff. A computational
model of dynamic belief inference (Yoshida, Dolan, &
Friston, 2008) was fit to the behavioral data. At the
neural level, computations reflecting the uncertainty
of the inference about the other agent’s strategy were
found in the dmPFC, while the estimated sophistication
level (or depth of recursion) of the participant’s strategy
was encoded in the left dlPFC (Yoshida, Seymour,
Friston, & Dolan, 2010). Involvement of the dmPFC in
tracking an opponent’s or partner’s belief during stra-
tegic interaction was confirmed by electrophysiological
recording of dmPFC neurons in non-human primates,
who were found to engage in recursive learning and
counter predictable exploitation by their opponent
(Seo, Cai, Donahue, & Lee, 2014). Neurons in the
dmPFC represented the animal’s recent choice and
reward history, as well as a switching signals that cor-
related with the animal’s tendency to deviate from
simple heuristic learning.

In a multi-strategy competitive learning task called the
“patent race game”, a hybrid model integrating both RL
and social belief inference best explained behavior (Zhu,
Mathewson, & Hsu, 2012). Ventral striatum was found to
track both an RL prediction error – the difference
between expected and actual payoffs given the chosen
strategy – and a belief-based prediction error – the dif-
ference between expected and actual payoffs taking into
account all possible strategies weighted by the beliefs
about future actions of opponents. Interestingly, the
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rostral ACC exclusively encoded the belief prediction
error, in a way that correlated with individual difference
in the engagement of belief learning.

Finally, in a recent study (Hertz et al., 2017), the authors
investigated the neural computations associated with the
source of social influence during advice giving. The stra-
tegic aspect of the task is such that two advisers, one of
which is the participant, compete for influence over a
“client”. Theory of mind regions were again associated
with different components of behavior. Activity in the
rTPJ was found to be involved in tracking whether the
client chose them or not, which was argued to play a role
in determining strategic influence over the client accord-
ingly; while accuracy relative to the other adviser was
found to be encoded in the mPFC.

These studies suggest that the same brain areas
involved in learning from another agent by inferring
their beliefs and intentions, mainly dmPFC, pSTS and
rTPJ, can also perform these computations in strategic
and competitive contexts. Several other sophisticated
computational models of mentalizing and recursive
belief inference have been put forward to explain stra-
tegic social interactions between people (Devaine,
Hollard, & Daunizeau, 2014; Hula, Montague, & Dayan,
2015; Hula, Vilares, Lohrenz, Dayan, & Montague, 2018;
Xiang, Ray, Lohrenz, Dayan, & Montague, 2012) and to
predict sequential actions in complex environments
(Baker, Jara-Ettinger, Saxe, & Tenenbaum, 2017); how-
ever, the neural bases of these computations have yet
to be fully examined using model-based fMRI.

Learning ABOUT others

So far we have described computational strategies that
people use to learn from other people’s actions, out-
comes, beliefs and intentions, in order to perform a task
correctly by themselves. However, in many situations,
we also learn about others. This type of learning usually
involves learning about subjective values and prefer-
ences of another person or a group, in a context
where there is no right or wrong decision, but instead
a desire to understand others and possibly “fit in” with
the group. Whether people know it or not, what they
learn about others can influence their own preferences
and decisions and can help a group reach a consensus.
In this part, we present literature that has shed light on
the neural computations underlying these processes.

Learning about other people’s attitudes and
abilities

The neurocomputational mechanisms by which people
learn about others have been examined in several

recent studies. In Boorman et al. (2013), participants
have to evaluate the expertise of other people as com-
pared to that of algorithms in predicting the value of
hypothetical assets. Model-based computations charac-
terized subjects’ behavior such that individuals credit
people who agree with them more than equivalent
algorithms when their predictions are correct, and
penalize them less when they are incorrect. Beliefs
about the expertise of other people and algorithms
were represented and updated in the mentalizing net-
work (mPFC, ACC, TPJ, precuneus), while behavioral
differences between learning about people relative to
algorithms were reflected in the lateral orbitofrontal
cortex (OFC) and mPFC. In another study (Wittmann
et al., 2016), participants played a reaction-time game
in which they had to learn about other people’s ability
as well as estimate their own ability, both in coopera-
tive and competitive social contexts. Given self and
other performance history, a computational RL frame-
work was used to model participants’ estimates of self-
and other-performance. At the neural level, effects were
found in the dmPFC, which tracked two components of
the model: others’ estimated performance, as well as
self-performance in “compete” relative to “cooperate”
contexts.

In addition to learning about other people’s exper-
tise and ability in performing a task, individuals often
learn about the preferences or subjective values of their
peers. For example, in a social version of a temporal
discounting task, participants learned about another
person’s subjective values and discounting rate
(Garvert, Moutoussis, Kurth-Nelson, Behrens, & Dolan,
2015). Using fMRI repetition suppression, the authors
showed that learning about another agent’s subjective
values induce plasticity in the mPFC. This plasticity is in
turn explained by a striatal prediction error signal
encoding the difference between self and other’s
values. The mPFC was also found to be involved in
social hierarchy learning (Kumaran, Banino, Blundell,
Hassabis, & Dayan, 2016). In this task participants had
to learn a hierarchy of nine people within a company,
including either themselves or a friend. Learning beha-
vior was better explained by a Bayesian inference
scheme than by an RL model. Knowledge about one
own’s hierarchy, as opposed to that of a friend, was
found to be selectively updated in the mPFC. Domain-
general learning of other people’s relative status within
a hierarchy was mediated by learning signals in the
amygdala and hippocampus.

A situation in which it is key to be able to learn
about other people’s preferences is when an individual
has to make a decision on behalf of someone else. In
Nicolle et al. (2012), the authors tested this using an
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intertemporal choice task in which participants some-
times choose for themselves and sometimes for some-
one else. Depending on which choice was relevant for
the task, neural signals reflecting self-choice versus
other-choice encoding were inter-changeable between
the vmPFC and the dmPFC. The choice that needed to
be executed was represented in the vmPFC, while the
non-executed choice (i.e. the other person’s preference
when I choose for myself, or my choice when I choose
for the other person) was reflected in the dmPFC. In
another study, magnetoencephalography (MEG) was
used during a learning task to identify how learning
signals are attributed to oneself versus another agent.
The representation of prediction errors in the brain
showed separate signals depending on the identity of
the agent being learned about, consistent with a
“neural self-other distinction” (Ereira, Dolan, & Kurth-
Nelson, 2018).

Finally, a recent study developed a computational
model of how people learn about other people’s pru-
dence, impatience, or laziness, in a task that involves
observing another agent’s cost-benefits decisions
between a low-cost/low-reward option and a high-
cost/high-reward option before the participant makes
their own decision (Devaine & Daunizeau, 2017). There
were three cost types associated with the three atti-
tudes mentioned above: delay (impatience), effort (lazi-
ness) and risk (prudence). The computational model,
based on Bayes-optimal information processing princi-
ples, correctly predicted two biases that arise when
individuals learn about others’ attitudes. First, people
overestimate the degree to which their preferences are
similar to others (social projection bias) and second,
they align their decisions with those of others (social
influence bias). Another recent study provided more
evidence and a computational account of the social
projection bias, showing that people’s own priors influ-
ence how they learn about the food preferences of
others (Tarantola, Kumaran, Dayan, & De Martino,
2017). The neural mechanisms of such computations
still remain to be established.

Social influence on individual preferences and
choices

Some of the studies presented above already hint at
the tendency that one’s own attitudes are influenced by
the attitudes of other people. In Garvert et al. (2015),
the plasticity observed in the mPFC value representa-
tion following learning about another person’s values
predicted changes in participants’ own preferences. In
Devaine and Daunizeau (2017), the computational
model suggests that the degree to which individual

preferences align with the other agent’s results from
an interaction between the social-projection and the
social-influence biases.

Social influence on risk preferences – the extent to
which an individual makes a safe versus risky decision
after observing the behavior of others – has been
investigated in two recent studies (Chung,
Christopoulos, King-Casas, Ball, & Chiu, 2015; Suzuki,
Jensen, Bossaerts, & O’Doherty, 2016). In the former
(Chung et al., 2015), the authors found that observing
other people’s gambling decisions increased the sub-
jective utility of these gambles for the observer. Such
“other-conferred utility” was encoded in the vmPFC and
the strength of this signal predicted the degree of social
conformity. In Suzuki et al. (2016), behavioral contagion
of risk preferences was better explained by a change in
subjects’ risk attitudes (curvature of the utility function)
than by a change in their subjective evaluation of prob-
abilities (probability-weighting). Neurally, risk was
found to be represented in the caudate nucleus, while
belief updating about others’ risk preference was
encoded in the dlPFC. Across individuals, functional
connectivity between these two regions was associated
with the size of the contagion effect.

Collective decisions can also have an influence on
individual choice (Charpentier, Moutsiana, Garrett, &
Sharot, 2014). In this task, groups of five participants
make collective decisions between pairs of food items,
determined by the majority vote, then get to make
decisions for themselves between these items. Activity
in the OFC in response to the initial social influence (i.e.
the result of the collective decision) was found to be
mirrored at a later time when the individual chooses
their own action. The strength of this mirroring pre-
dicted the extent to which participants altered their
decisions to align with the group.

Not only can other people’s preferences and deci-
sions affect ours, but how confident other people are
about their decisions should also matter in our own
judgment. A recent study examined how other people’s
confidence is integrated in value computations
(Campbell-Meiklejohn, Simonsen, Frith, & Daw, 2017).
Such integration was found to rely on a posterior-ante-
rior gradient of activity from the subgenual ACC to the
vmPFC to the ventromedial Broadmann area 10 (BA 10).
More posterior areas (ACC/vmPFC) encoded experien-
tial values as well as values observed from others, while
more anterior areas (BA 10) integrated values com-
puted from other people’s choices weighted by their
confidence. This mechanism suggests that areas that
are located in the most anterior part of the prefrontal
cortex are able to perform more complex computations
underlying social influence.
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Finally, there is evidence that social conformity – the
tendency of people to align their behavior with the
group – may be computationally implemented as a
reinforcement learning process. A line of studies sug-
gests that an agent learns about the preferences or
opinions of another agent or a group by computing
the difference between their own judgment and the
judgment of the group (similar to a prediction error)
and integrates social information, possibly from several
sources, together with individual information
(Klucharev et al, 2009; Toelch et al, 2013; Huber et al,
2015). According to a recent meta-analysis of functional
brain imaging studies of social conformity (Wu, Luo, &
Feng, 2016), dmPFC responses to deviation between
individual and group preferences constitute the main
signal that predicts subsequent conformity to group
opinions. In addition, the meta-analysis also points
towards anterior insula activation and ventral striatum
deactivation in response to these deviations, although
these signals do not seem to be directly linked to
preference changes.

Collective decision-making: neural computations
involved in reaching a consensus

How people behave in a group, from collaborating or
helping each other to reaching a consensus on a sub-
jective question, is a key question of social cognition.
Several studies have developed computational
accounts of how these collective behaviors arise.

In a first study (Suzuki, Adachi, Dunne, Bossaerts, &
O’Doherty, 2015), groups of 4 or 6 participants repeat-
edly chose between pairs of items until they reached a
consensus. This means that if they all choose the same
item they get it as a reward, but if they disagree they
have to make a choice again. Therefore, it is crucial that
participants in this task incorporate their own prefer-
ences with the likely choices of other members of the
group. The computational model predicted that the
value assigned to one given item by an individual
depended on the preference of that individual for the
item, the group members’ prior choices, as well as on
the “stickiness” of the round (i.e. how aggregated the
preferences of other group members for that item are).
Those three components had distinct neural represen-
tations: personal preferences for items in vmPFC, group
members’ prior choices in TPJ and pSTS, and stickiness
in posterior parietal cortex. Participants’ choices were
predicted by an integration of these signals in the ACC.
Another recent study investigated a similar mechanism,
namely how individual and social information are inte-
grated during group decisions, such as jury decisions
for criminals (Park, Goïame, O’Connor, & Dreher, 2017).

Participants appropriately integrated this information
and adapted their judgments to groups of different
sizes in a Bayesian manner. The best-fitting Bayesian
inference model also revealed that the strength of inte-
gration of social information with individual judgment
depended on its credibility. Activity in the dorsal ACC
reflected belief updates predicted by the model, while
activity in the dlPFC and functional connectivity
between the dlPFC and dorsal ACC were associated
with the credibility of social information in larger
groups.

Several other studies have developed interesting
computational models of collective decision-making at
the behavioral level. These models provide insights into
how confidence escalate during the collective decision-
making process (Mahmoodi, Bang, Ahmadabadi, &
Bahrami, 2013), how people communicate their confi-
dence to each other in the group (Bang et al., 2017) and
how they integrate the opinion of group members who
differ in their competence (Mahmoodi et al., 2015).
Interestingly, the latter study revealed an equality bias,
by which participants assign nearly equal weight to
each other’s opinion regardless of competence, a result
replicated across three cultures. These studies have not
used neuroimaging to investigate whether the compu-
tations predicted by the behavioral models are imple-
mented in the brain. They could therefore have
important implications for future neuroscientific
research to help validating the behavioral models and
their implementation at the neural level, as well as to
improve our mechanistic understanding of these key
social processes.

Finally, the study of collective behavior can also
provide interesting evolutionary and societal perspec-
tives. Mann and Helbing (2016) recently developed an
evolutionary game-theoretic model of collective predic-
tion to examine the role of incentives in maintaining
useful diversity. They showed that an incentive scheme
that rewards accurate minority predictions results in
optimal diversity and collective intelligence, in compar-
ison to market-based incentive systems, which produce
herding effects, reduce information available and
restrain collective intelligence. Such models could
have important societal and policy-related implications.

Discussion

In this review, we explored studies using a combination
of computational modelling of behavior with functional
neuroimaging to examine learning and decision-mak-
ing in social contexts. Overall, these studies help illus-
trate some of the core advantages of the computational
approach relative to more traditional social psychology
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and neuroscience methods. They also point towards
some potential pitfalls and issues associated with com-
putational modelling, which we discuss below.

Methodological advantages of the computational
approach

Traditionally, most social neuroscience studies have
used task designs with multiple conditions (e.g. 2*2
factorial design), allowing to compare behavior and
brain activity between two (or more) conditions, and
infer underlying processes accordingly. A common
example in social neuroscience could be comparing
performance on a task where the participant interacts
with another human participant versus with a compu-
ter. The inference is that brain responses to such a
contrast reflects the specific involvement of that net-
work in social processes. However, there are two main
issues with such a “categorical” approach. First, if other
factors, such as task difficulty, are not perfectly matched
between the two conditions being compared, they
could be driving differences in brain activity instead of
the factor of interest. Second, many cognitive processes
cannot be defined as simply as a binary contrast
between conditions (e.g. quantifying the expected
reward value of a stimulus, or the probability that an
observed agent will perform a given action).

The computational approach, in contrast, allows a
much more fine-tuned regression of variables of inter-
est against brain activity. By deriving the behavioral
computations associated with a specific mechanism
and examining the neural correlates of these computa-
tions, this approach overall provides a more mechan-
istic account of brain function, and can offer answers as
to how exactly a particular process is implemented in
the brain. If two competing hypotheses about a parti-
cular mechanism make different predictions as to what
variables should be encoded in the brain, these predic-
tions can be directly tested using neurocomputational
methods. Finally, such methods are more flexible than
traditional contrast approaches in the sense that multi-
ple parametric variables can be added to the BOLD
model at the same time, thus controlling for potential
confounds and identifying the unique contribution of a
variable to the BOLD signal.

Potential issues and pitfalls of neurocomputational
methods

A general issue with any computational approach is
overfitting (Vandekerckhove, Matzke, & Wagenmakers,
2015). If the behavioral or the BOLD models are defined
with too many parameters or regressors than justified

by the data, this can lead to findings that fail to repli-
cate or generalize. To avoid this pitfall, it is important to
proceed to a rigorous model comparison using meth-
ods that prevent overfitting, such as out of sample
cross-validation, penalization of more complex models
with Bayesian or Akaike Information Criteria (Akaike,
1974; Schwarz, 1978), and Bayesian Model Selection
(Stephan, Penny, Daunizeau, Moran, & Friston, 2009).
Ultimately, it is also key to replicate both behavioral
and neuroimaging findings in an independent sample.

Second, another potential issue is correlation
between model-based regressors. Similar to the tradi-
tional contrasts approach, it is possible that a particular
regressor of interest is correlated with another variable,
thus leading to misinterpretation of effects of interest.
To prevent this, it is crucial to examine these potential
correlations ahead of time, by collecting behavioral
pilot data and defining the behavioral models and
model-based regressors. Just as with more traditional
approaches to neuroimaging, it may be necessary to
structure the experimental design prospectively in such
a way so as to minimize the correlation between the
regressors of interest and confounding variables. If
some correlations between regressors remain, they
have to be controlled for by including both regressors
in the BOLD model in order to obtain the unique con-
tribution of the regressor of interest.

Finally, a major concern that seem to emerge from
this field of research is that most studies, as illustrated
by those described in this review, examine very specific
questions with specific task designs and computational
models. They report ad-hoc models that are applied
uniquely to one particular situation or task, thus making
generalization very difficult. Moving forward, we need a
“unified” theory that can be extended and generalized
to all sorts of tasks and computational problems, at
least within the realm of social inference.

Conclusions and benefits for behavioral and social
sciences

The studies described in this review provide key
insights into how a computational approach can inform
the behavioral and neural mechanisms by which people
learn from and about others. We suggest that Bayesian
inference models, and their associated neural correlates
in the mentalizing network, best explain people’s social
learning behavior, especially in complex tasks involving
strategic or competitive interactions. Simpler computa-
tions derived from an RL framework may however per-
form very well in some contexts. Figure 1 provides a
summary of these strategies and associated neural
computations, possibly paving the way for a more
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“unified” theory of the classes of computational strate-
gies involved in social learning.

Overall, we suggest that the benefits of a compu-
tational approach to social neuroscience outweighs its
potential pitfalls, not only because of the more
refined mechanistic accounts it can provide, but also
given its ability to inform behavior. Indeed, a particu-
lar behavior can at times be equally well explained by
the computations of two different variables, and
model-based analysis of neuroimaging data can
answer the question of which of these variables is
preferably encoded in the brain, shedding light on
the mechanism at play. Focusing on the example of
observational learning, this neurocomputational
approach has allowed disentangling specific compu-
tations associated with different learning strategies
(e.g. vicarious reward learning versus action imita-
tion), which could in turn have implications for situa-
tions or psychiatric conditions where social learning is
impaired.

Finally, this review focused on social learning and
decision-making, but this computational neuroimaging
approach has the potential of being applied to other
subfields of social neuroscience. Some already promis-
ing examples include studies of social feedback proces-
sing (Jones et al., 2011), altruism (Hutcherson, Bushong,
& Rangel, 2015), moral behavior (Crockett, Kurth-
Nelson, Siegel, Dayan, & Dolan, 2014; Crockett, Siegel,
Kurth-Nelson, Dayan, & Dolan, 2017) or social norm
enforcement (Zhong, Chark, Hsu, & Chew, 2016).
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